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Summary

In situ treatment of waste and soil at contaminated sites offers an alternative to the traditional
approach to site remediation involving excavation and redisposal or onsite isolation. The in situ
“Detoxifier” is an innovative technology/equipment potentially capable of implementing a range
of in situ treatment methods (e.g., air/steam stripping, neutralization, solidification/stabiliza-
tion, oxidation, etc.). It is an adaptation of the drilling technology providing capabilities for in
situ delivery of treatment agents in dry, liquid, slurry, or gaseous form to the soil and thorough
mixing and homogenization of a vertical column of soil. The recent field demonstration of the
mobile system in a full-scale site remediation application at a site in Southern California was
documented. The soil at the site was contaminated with hydrocarbons from leaking underground
fuel storage tanks. Steam and hot air were used to strip hydrocarbons from the soil; the off gas
was processed in a treatment train and recycled to the soil. By adjusting treatment conditions, the
total petroleum hydrocarbons concentration in the soil could be reduced from an initial level of
5,000 ppm or higher to less than 100 ppm. Based on field demonstration results, the equipment
vendor is developing designs for a more powerful and compact Detoxifier with enhanced off gas
treatment capabilities.

Introduction

An examination of remedial responses which have been completed, are on-
going, or have been recommended for contaminated sites indicates cleanup
strategies generally involving removal of waste/contaminated soil for disposal
at a commercial landfill and/or site isolation using physical barriers [1,2].
There are, however, some major limitations and concerns associated with re-
mediation approaches which rely on the use of existing technologies such as
liners, caps, slurry walls, grout curtains, etc. for long-term waste containment
(onsite or at new offsite locations) and/or which involve waste excavation and
redisposal. Chief among these limitations and concerns are the following:

* Present address: Solid and Hazardous Waste Management Programs, URS Consultants, Inc.,
249 East Ocean Boulevard, Suite 910, Long Beach, CA 90802, U.S.A.
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e Although there have been significant improvements in the design and con-
struction, and hence in the performance of containment systems such as
landfills and surface impoundments, uncertainty remains regarding the
ability of these systems to provide long-term environmental protection. Nu-
merous cases of failures of the containment systems have been reported
(e.g., see Refs. 3-6);

e Exposure of workers, the general public, and the environment to additional
risks associated with site excavation; and with temporary storage, transpor-
tation, and redisposal of excavated materials;

e Growing scarcity of approved offsite facilities for waste redisposal and the
high cost of and the increasing public opposition to schemes involving waste
relocation;

e Increasing criticism of onsite waste isolation and/or waste relocation at off-
site facilities as short-sighted strategies that merely transfer the problem to
future generations or to new locations [1,7].

Because of the above limitations and concerns, waste treatment, which can
provide a more effective and permanent remediation solution than site isola-
tion and/or waste relocation, is beginning to receive increased attention. In the
past, however, waste treatment in general, and in situ or in-place treatment in
particular, have not been generally viewed as a viable option. This has been
primarily because of the unavailability of reliable and demonstrated technol-
ogies with adequate throughput capacity for processing large volumes of wastes
or contaminated soil within reasonable time frames and at acceptable costs. It
has been argued that if the analysis of the remediation costs includes the cost
for implementation of a comprehensive design and construction QA/QC pro-
gram, which is required to ensure improved performance, and/or cost of the
corrective action associated with failure of the disposal methods, then treat-
ment systems which provide more permanent remedies may in fact prove to
be most cost effective solution in the long term. The present unavailability of
suitable treatment technologies has thus been attributed to a heretofore lack
of emphasis on waste treatment and the consideration of short-term rather
than long-term cost effectiveness.

Treatment of wastes and contaminated soils can be accomplished via offsite
or onsite treatment of the excavated materials or by in situ or in-place treat-
ment (i.e., without excavation).

In situ treatment would be the preferred option, as it offers the following
advantages:

e Eliminates safety, environmental, and the public health risks directly as-
soclated with excavation, transportation, storage, and handling of hazard-
ous materials;

e Does not require additional land areas for treatment systems (e.g., as would
be needed with land spreading for biotreatment);
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e In the absence of excavation, there should not be a significant increase in
volume and hence need for additional disposal capacity;

o Decontaminated soil is left in place (i.e., it does not have to be taken to
another location for disposal).

‘The objective of this paper is to review the possibilities and current limita-
tions of technologies for in situ waste treatment. The review includes the de-
scription of a new technology (trademarked “Detoxifier”), the first full-scale
field demonstration of which was recently documented. This application in-
volved decontamination of soil contaminated with hydrocarbons from leaking
underground fuel storage tanks.

Proposed technologies and key problem areas

Based on the technologies that have been developed and are used in conven-
tional water and wastewater treatment and in mining, oil and gas, and chem-
ical process industries, a number of processes and systems have been proposed
for in situ treatment [8]. These methods use biological, chemical, physical, or
thermal methods to degrade, detoxify, extract, or immobilize contaminants.
The leading technologies among those proposed are:

e Bioreclamation for treatment of contaminated soil and/or groundwater;

e Air stripping and soil vapor extraction for the removal of volatile organics
from soil;

e Vitrification to bring about destruction of organics and to convert the in-
organic residues and the soil matrix into an inert, glassy material;

e Soil washing to remove contaminants from the soil by use of appropriate
extractants/eluents;

o Use of the in situ Detoxifier which is potentially capable of implementing a
range of treatments including air/steam stripping, solidification/stabiliza-
tion, neutralization, and oxidation.

The operating principles and certain desirable features and limitations of
these technologies are highlighted in Table 1.

In situ treatment processes have not generally been subjected to rigorous
engineering analysis or testing under a variety of field conditions. This anal-
ysis or testing would determine technical feasibility and costs for application
to the range of conditions encountered at contaminated sites. These conditions
reflect variations within a site and among sites with respect to the type of
contaminants encountered and the hydrogeological and environmental set-
tings. Thus, the type of contaminants, the depth to groundwater, and the
permeability and uniformity of the geological media through which the treat-
ment agent(s) must be moved and within which the treatment agents and
reaction products must be contained would be expected to have significant
impacts on the efficiency, cost, uniformity, and environmental acceptability of
the cleanup operation. Some areas of potential technical problems that must
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Fig. 1. Bioreclamation technology for treatment of contaminated soil and groundwater {13].

be addressed through R&D studies and field validation programs relate to the

following:

e The development or selection of suitable treatment agents (given the com-
plex, nonhomogenous, and variable nature of the wastes encountered at con-
taminated sites);

e The techniques and procedures for the delivering, distributing, and mixing
of the treatment agents in the subsurface;

e The means for containing the input and reaction products within the target
zone.,

Carbon adsorber

Induced-draft fan ”
Forced-draft In;echo? manitold Sampling and
fan ' Extraction manifold metering g

Sampling and

- 2
ontaminated so!
i

Fig. 2. Air stripping removal of volatile organic compounds [15].
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Delivery and recovery systems: key to successful in situ treatment

The success of in situ treatment would depend to a great extent on the avail-
ability of equipment and procedures capable of delivering, distributing, mixing
through, and recovering the treatment agents, all at a reasonably fast rate.
Although a number of delivery and recovery methods have been proposed, these
techniques have not generally been evaluated in a remedial application in a
field setting. The exception is for certain cases involving bioreclamation of
groundwater contaminated with biodegradable organics [11,12] or the addi-
tion of solidification agents to sludges in ponds, pits, and lagoons [23,24].
These methods are reviewed in several recent publications {19,20,25].

The proposed techniques involve delivering treatment agents such as am-
bient or heated air or aqueous solutions containing surfactants and oxidizing
agents. Delivery can be via gravity (e.g., flooding, ponding, or surface seepage)
or via forced systems such as injection pipes. Recovering the unused treatment
agents and byproducts can be accomplished in two ways. The first is via gravity
(e.g., open ditches and trenches and porous drains). The second way is via
forced or vacuum systems (e.g., well points, induced draft fans, and “leachate”
collection underdrains).

Although the proposed material delivery and recovery systems have not been
fully tested, purely technical considerations and the available limited data from
EPA-sponsored R&D and from actual site cleanup involving decontamination
of spill-impacted soils indicate considerable difficulty in a field situation ap-
plication. In light of the above discussion and the information in Table 1, these
difficulties stem from several sources:

1. Nonhomogeneity and variable properties of the waste/soil media through
which the treatment agents must be moved, which can give rise to channeling
and nonuniform or incomplete treatment;

2. Slow treatment rate due to slow rate of fluid flow, especially in low perme-
ability media or where treatment can result in formation of precipitates or
biological deposits;

3. Potential for spread of contamination and the requirement for contain-
ment of the treatment agents and the reaction products within the target zone.

Thus, the applicability of many of the proposed in situ treatment technolo-
gies may be limited to cases where the contamination zone is:

o Permeable formation;

e Homogeneous;

o Relatively small in aerial extent or small areas can be segregated;

e Located in a hydrogeological setting where control of contamination and
groundwater pollution can be achieved.

The in situ Detoxifier

ATW, Inc. and Calweld, Inc. have addressed some of the above-mentioned
delivery, mixing, and monitoring problems and the uncertainty about the thor-
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oughness and uniformity of treatment. These firms, located in Santa Fe Springs,
California, have manufactured a very innovative equipment for in situ waste
treatment and soil decontamination.* The technology is currently being mar-
keted in the U.S. under the trade name Detoxifer by Toxic Treatments (U.S.A.)
Inc. (San Mateo, California). The first version of the system (Detoxifier I)
was recently evaluated at a site in Southern California in a full-scale applica-
tion of the technology for decontamination of soil contaminated with
hydrocarbons.**

The heart of the Detoxifier technology is the “process tower” (see Fig. 3)
which is essentially a drilling and treatment agent dispensing system, capable
of penetrating the soil/waste medium to depths of 25 ft (7.6 m) or more. The
process tower consists of an assembly of two cutter/mixer bits connected to
separate, hollow Kelly bars. The bits overlap and rotate in opposite directions.
The rotating action provides for simultaneous cutting and mixing of the soil-
/waste material. Treatment agents (in dry, liquid, vapor, or slurry form) can
be conveyed through the hollow Kelly bars and ejected through feed jets and
orifices to the mixing area. A rectangular shroud covers the mixing area to
minimize dust generation and capture gas and vapor released during the sub-
surface treatment. The captured off gas is treated in a process train and recy-
cled through the process tower to the treatment zone.

The off gas from the shroud is monitored continuously. The output is used
to adjust the treatment conditions, including the length of treatment, to achieve
desired treatment objectives.

In actual site cleanup, the treatment of an area is on a block-by-block basis.
For example, the area to be treated is divided into rows of blocks, with the
process tower being moved to an adjacent block after the treatment of a block
is completed. (The process train and the control room are tractor mounted.
The components of the off gas treatment train and auxiliary support equip-
ment are mounted on trailers and, hence, are also mobile.) Figure 4 presents
the dimensions of a treatment grid cell, including the effective area which is
treated at each location that the treatment equipment is operated on. As noted
in the figure, each bit assembly is capable of drilling a hole of 4.5 ft (1.4 m) in
diameter. To cover all the areas to be treated, the drill is positioned with about
10-percent overlap of the grid cells. With this overlap, the effective treatment

*According to ATW, Inc., United States and foreign patents for the methods and processes shown
or described herein have been issued or are pending.

**CH2M HILL was one of the three consulting firms retained by Toxic Treatments (U.S.A.) Inc.
to document the operation of the Detoxifier at this site and to analyze the results. The information
presented here is excerpted from the report which was submitted to Toxic Treatments (U.S.A.)
Inc. [22]. The review of the technology and field results here does not imply endorsement or
promotion of the technology by the author or CH2M HILL.
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Fig. 3. The in situ Detoxifier.

area, or a treatment block, is about 3.25 ft by 7.3 ft (0.99 m by 2.23 m). This
area is shown with the dotted line in Fig. 4.
The important features of the Detoxifier system are the following:

e Delivery of the treatment agent (s) directly to the treatment zone;

e Thorough mixing and homogenization resulting in effective contact be-
tween the treatment agent (s) and the contaminant;

e Closed loop nature of the operation;

e Ability to use a range of treatment agents in liquid, gas, solid, and slurry
forms, thus providing versatility and ability to implement a range of treat-
ment including stripping of volatile organics (with hot air and/or steam),
oxidation, reduction, precipitation, neutralization, and stabilization/
solidification;

e Mobile nature of the treatment system.
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Fig. 4. Treatment block dimensions.

Detoxifier components and the treatment train

As noted above, the off gases collected in the process tower’s shroud are
passed through a treatment train before being recycled to the treatment zone.
The unit processes comprising the treatment train are selected and designed
based on the type and level of pollutants which are to be removed from the off
gases.

Figure 5 shows the treatment train and auxiliary support components for
the Detoxifier I, which was used for remediation of a hydrocarbon-contami-
nated site in Southern California. Heated air and steam (and, in some cases,
an aqueous solution of an oxidizing agent) were the treatment agents used at
this site.

For discussion purposes, the treatment train shown in Fig. 5 can be broken
down into the following components:

e The process tower, including the drill bit assemblies, tower shroud, and the
rotary and hydraulic motors which control the up-and-down and rotating
motions of the drill assemblies (see Fig. 3);

o The control room containing the online monitoring equipment;

e The crawler tractor, which moves the drilling rig, the control room, and a
diesel engine power generator;
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o Gas treatment and power feed systems, mounted on two trailers, and con-
sisting of:

— Suction blowers,

— Cooling cotl,

- Demisters,

— Refrigeration and heating coils,

— Activated carbon adsorption unit,

— Powder storage bins and feeding system,

— Primary and auxiliary compressors;

e Mixing and pumping systems (trucks) for preparing the treatment agent
solution;
e Steam production boiler, mounted on a separate trailer.

At the Southern California site, the off gas from the shroud, which contained
the exit air, steam, and volatilized hydrocarbons, was cooled and passed through
three demisters of differing designs. The gas was then passed through a refrig-
eration coil to condense and remove excess moisture. It was subsequently
heated, when necessary (see below), before entering the activated carbon ad-
sorption unit. Westate Carbon, Los Angeles, California, supplied the carbons
used in the adsorption unit. The particular brands used were CO-601 (coal
based) and CC-601 (coconut shell). (The preferred temperature range for the
removal of hydrocarbons from gas streams with these particular brands of car-
bon is in the ambient (about 75°F) to 100°F range ( ~24-38°C). Since the
temperature of the gas exiting the refrigeration coil was always above 75°F,
there was no need to heat the gas following refrigeration before it entered the
adsortion unit.)

Following carbon adsorption, the gas was split into two streams (one for
each drill bit), compressed, reheated, and was recycled to the treatment zone
through the two Kelly bars in the process tower. As shown in Fig. 5, if powder
(solidification agent) addition is to be employed, the heated gas stream would
be diverted to the powder feed system before entering the Kelly bars. In the
center of each Kelly is a separate line which receives steam and treatment
solutions at the top and delivers them to the soil through screw-on type nozzles
located along the drill bit mixer assembly.

Operating experience and key results from site remediation

As noted previously, the remediation at a hydrocarbon-contaminated site in
Southern California was the first full-scale field demonstration of the Detox-
ifier technology. The site formerly contained underground fuel storage tanks.
Leakage from the tanks had resulted in soil contamination with total petro-
leum hydrocarbon (THC) concentration levels in the top 25 feet of soil, gen-
erally in the 100-1,000 ppm range. One segment of the site had THC values in
excess of 15,000 ppm.
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The 10,315-square-foot treatment area was subdivided into rows containing
433 treatment blocks. Of these, 246 blocks were treated to a depth of about 15
ft (4.6 m), and the remaining 187 blocks were treated to a depth of about 22
ft (6.7 m). The shroud off gas was monitored continuously using an online
THC analyzer with a flame ionization detector and a strip chart recorder. The
readout provided the basis for a determination by the operator for the required
dosages of the treatment agents and the treatment time. Soil samples were also
obtained from many blocks before and after treatment (generally at depths of
5,10, and 21 ft — 1.5, 3.0 and 6.4 m) and analyzed by a commercial laboratory
for total hydrocarbons. A computerized data base management program was
used to process and analyze the large volume of information on treatment con-
ditions used (i.e., temperature, depth, cycles, and duration of treatment) and
results obtained on a block-by-block basis.

The key aims of the remediation effort at the subject site were to:

e Demonstrate the capability of the system to dispense treatment agents at
desired depths, to provide good mixing and homogenization of the mixture,
and to recover contaminants (i.e., hydrocarbons);

e Evaluate the adequacy of the various components of the treatment train (in
particular, the scrubbers, and the activated carbon adsorption units) under
a range of treatment conditions;

e ldentify and provide the data base for any needed design improvements to
the Detoxifier and the various components of the treatment train.

The remediation was considered a success insofar as the above objectives
were achieved. The field data, which are still being analyzed, indicate that by
adjusting the treatment conditions (i.e., amounts of air and steam used, and
the rate and duration of treatment in terms of speed and number of up and
down movements of the drill bit), the THC levels in the soil could be reduced
to less than 100 ppm via hot air/steam stripping. The results also indicate that
off gas monitoring via online THC analysis can provide a reasonably accurate
basis for assessing completeness of in situ treatment and hence the decision
by the operator to move the equipment to a new block. One key problem area
was the quick overloading of the carbon adsorption system when treating soils
with very high levels of hydrocarbons. This necessitated frequent replacement
of the carbon charge.

Based on the experience for this project, designs are being developed by the
technology vendor for fabrication of a more advanced Detoxifier unit (the De-
toxifier I1), which reportedly will be more powerful and cover a greater treat-
ment area per block. The system will also be more compact (i.e., the components
will be housed in one large trailer). To increase the carbon life, the carbon
adsorption system will be preceded by an additional treatment step (e.g., a
cryogenic unit) which will remove the bulk of the hydrocarbons from the
scrubbed off gas before it enters the adsorbers. A schematic process block dia-
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gram for one of the several designs being evaluated for Detoxifier II is shown
in Fig. 6.
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